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An example of evolution
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An example of short-term cross-lingual evolution

How to detect this?
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Detecting evolution of word embedding

Hypothesis : a change in the context of a word reflects a change of its meaning.

• Word use, meaning or connotation change ; new word appear and disappear ; new
sense appear and disappear.

• Tool: Time-varying word embeddings
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Literature I

Divide the corpus into T time slices : t1, t2, ..., tT .

Incremental updating [Kim et al., 2014]

• Learn an embedding for the first time slice

• Initialize the algorithm of successive time slices with the previous one
(incremental update).

Alignment of embedding spaces [Hamilton et al., 2016, Kulkarni et al., 2015]

• Learn one embedding for each time slice;

• Alignment of the vectorial spaces (with optimization methods : find the best
linear transformation to align across time periods)

• Assumption: the meaning of most words is stable ⇒ when the alignment model
fails for one word, it may indicate a drift.
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Literature II

Probabilistic methods [Bamler and Mandt, 2017, Rudolph and Blei, 2018]

• Jointly learn the probabilistic embeddings and a latent diffusion process across all
time slices

• The diffusion process controls the drift of the embeddings

Advantage against static methods

• Smoother trajectories, Need less data per time step

• Easier to disambiguate random noise from semantic shift
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Drift distribution for scarce data
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Example of drift in two languages
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Challenges of the field

Evaluation and comparison

• Vast amount of historical data, no large manually labeled corpus

• No ground truth

• Lack of standardized evaluation practices

• No standard experimental process ⇒ few comparison between methods.

Language is complex

• Word polysemy : Simplification in most works = vector representation of a word
∼ its main sense.

• Need sense-aware algorithms to quantify the evolution of the weights of the sens
of a word.

• No individual and independent shift ! Words shift together in a correlated way.
See it as a network of word relations.
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Applications

How can we use it ?

• Short-term : event detection, topics popularity...

• Long-term : Evolution of languages (= Diachrony), global law of semantic shift...

• Enhancing accuracy for tasks on a temporal corpus (Information Retrieval, ...)

Future work

• Diachronic sentiment-specific embeddings

• For short-term reputation risk

• Using label propagation
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