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An example of evolution
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An example of short-term cross-lingual evolution

Ukrainian
Pejorative term Ukrainian use it to Association of
Russian-Ukrainian used by Russian name their Patriots :
Crisis about Ukrainian soldiers and Ukrainian political
soldiers volunteers party created in
June 2015

Dill (in Russian)

How to detect this?
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Detecting evolution of word embedding

Hypothesis : a change in the context of a word reflects a change of its mea
e Word use, meaning or connotation change ; new word appear and disappear ; new
sense appear and disappear.

e Tool: Time-varying word embeddings
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Figure 1: Trajectories of brand names and people through time: apple, amazon, obama, and trump.
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Literature |

Divide the corpus into T time slices : t1, t2, ..., tT.

Incremental updating [Kim et al., 2014

e Learn an embedding for the first time slice

e Initialize the algorithm of successive time slices with the previous one
(incremental update).

Alignment of embedding spaces [Hamilton et al., 2016, Kulkarni et al., 2015

e Learn one embedding for each time slice;

e Alignment of the vectorial spaces (with optimization methods : find the best
linear transformation to align across time periods)

e Assumption: the meaning of most words is stable = when the alignment model
fails for one word, it may indicate a drift.
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Literature |l

h and Blei, 2018

Probabilistic methods [Bamler and Mandt, 2017, Rudol

e Jointly learn the probabilistic embeddings and a latent diffusion process across all

time slices
e The diffusion process controls the drift of the embeddings
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Advantage against static methods

e Smoother trajectories, Need less data per time step
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o Easier to disambiguate random noise from semantic shift
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Drift distribution for scarce data
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Example of drift in two languages
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Challenges of the field

Evaluation and comparison

e Vast amount of historical data, no large manually labeled corpus
e No ground truth

e Lack of standardized evaluation practices

e No standard experimental process = few comparison between methods.

Language is complex

e Word polysemy : Simplification in most works = vector representation of a word
~ its main sense.

o Need sense-aware algorithms to quantify the evolution of the weights of the sens
of a word.

e No individual and independent shift | Words shift together in a correlated way.
See it as a network of word relations.
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Applications

How can we use it ?

e Short-term : event detection, topics popularity...
e Long-term : Evolution of languages (= Diachrony), global law of semantic shift...

e Enhancing accuracy for tasks on a temporal corpus (Information Retrieval, ...)

o Diachronic sentiment-specific embeddings
e For short-term reputation risk

e Using label propagation
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